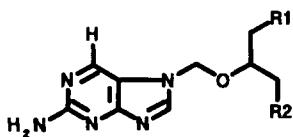


Poster Session II

Herpesvirus Infections


87

Syntheses and *in vivo* Antiviral Activity of Prodrugs of an N7-Isomeric Acyclic Nucleoside Analogue.

G. Jähne¹, G. Gross², M. Helsberg¹, Th. Scholl², and I. Winkler¹;

¹Hoechst AG, SBU Antiinfectives - Research, D-65926 Frankfurt am Main, Germany; ²Hoechst AG, RCL Pharmacokinetics/Metabolism, D-65926 Frankfurt am Main, Germany

The regioselective synthesis of N7-substituted 2-aminopurines using persilylated 2-acetamido-6-chloropurine as starting material, especially the acyclic nucleoside analogue I (compound 2242), and ether-, ester-, and mixed ether-ester-prodrugs thereof, is described. The *in vivo* antiviral activity after oral administration of the parent compound I in HSV-1 infected mice is evaluated and compared with the activity of the prodrugs II - VII. The diacetate III (code number HOE 961) proved to be the best compound in this model and was selected for further development.

I:	R1 = R2 = OH
II:	R1 = R2 = OiPr
III:	R1 = R2 = OC(O)CH ₃ (HOE 961)
IV:	R1 = R2 = OC(O)CH ₂ CH ₃
V:	R1 = R2 = OC(O)C(CH ₃) ₃
VI:	R1 = R2 = OC(O)Ph
VII:	R1 = OiPr, R2 = OC(O)CH ₃